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Abstract

An efficient numerical scheme for simulations of fully nonlinear non-breaking surface water waves in 3D is pre-

sented. The water depth is either shallow, finite or infinite. The method is based on a fast, rapidly converging, iterative

algorithm to compute the Dirichlet to Neumann operator. This is evaluated by expanding the operator as a sum of

global convolution terms and local integrals with kernels that decay quickly in space. The global terms are computed

very quickly via FFT. The local terms are evaluated by numerical integration. Analytical integration of the linear part

of the prognostic equations in Fourier space is obtained to machine precision. The remaining nonlinear components are

integrated forward in time using an RK-scheme combined with a special step size control technique. This yields a very

stable and accurate time marching procedure. Zeros-padding in the spectral space represents the anti-aliasing strategy.

The method requires no smoothing. Illustration through examples show that the total energy is well conserved during

the numerical simulations. The scheme is stable and accurate, even for very long time simulations of very steep wave

events. The scheme is easily parallelizable. It propagates for example a Stokes wave of slope 0.2985 with a phase shift

error of about 0.3� after 1000 periods of propagation.
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1. Introduction

The rapidly increasing computer power enables computations that are significantly more advanced than

until recently were possible. There are problems that are so demanding that they will not be solved in the

near future by only increasing the hardware capabilities, however. To solve such types of problems, it is also
necessary to improve the numerical algorithms reducing substantially the amount of calculations. Direct

simulations of three-dimensional surface water waves is one example. Wave propagation over long time

in large domains is a very demanding numerical task, that cannot be tackled by the brute force approach.

This paper describes a novel efficient numerical method for fully nonlinear three-dimensional surface wave

simulations. The method is very efficient from a computational point of view and is suitable for simulations

using parallel computers.

Computations of very steep ocean waves represents an important challenge. The evolution of long

wave fields and the action of instability mechanisms have been focused in several studies following
the pioneering works of Benjamin and Feir [2] and Zakharov [40]. Reviews of the advances can be

found in [15,39]. Recent studies focus on instabilities and the formation of very big waves at sea

[12,16,22,27,33]. The effect of nonlinear four-wave interactions on the formation of freak waves was

studied by Janssen [21] using the NLS and the Zakharov equations. How a wave spectrum of a sea

relaxes toward stationary state was recently studied by Dysthe et al. [13] using extended NLS equations

in two horizontal dimensions.

Various approaches have been derived to solve exactly or approximately the surface wave problems

(see [9,15,34] for reviews). These methods can be divided into three categories: the simplified equations,
the high-order spectral methods and the boundary integral formulations. The oldest and simplest mod-

els are based on equations as, e.g. the nonlinear Schrödinger equation or extensions of this equation

[12,33]. These equations are easily and quickly solved numerically, and for some of them even analyt-

ically. The ranges of validity are limited and they cannot be used for steep waves or long time simu-

lations, however. High-order spectral methods are based on Taylor expansions [8,11,37]. They are

computationally efficient when the series converge, meaning that the waves must not be too steep.

For high-order approximations, the methods involve high-order derivatives and nonlinearities. The

schemes then become inaccurate and numerically unstable. For highly nonlinear waves these methods
do not converge. In practice, few terms are used. If rewritten in the Fourier space, these equations, with

low-order expansions, include the Zakharov equation [40]. Other methods for three-dimensional water

wave simulations also exist (see [1,19]).

The request for an improved understanding of the formation of very big waves motivated us to initiate a

fully nonlinear modeling of the phenomenon in three dimensions. It is important that the method is rapid

and the time integration accurate. This is fundamental, since realistic wave analysis typically is carried out

for large physical domains and long time. A fully nonlinear modeling was requested by the recent ISSC-

report [20], for example.
Our computational strategy is based on an integral equation formulation and extensive use of Fou-

rier transform. This solves the Laplace equation in the fluid domain, expressing the normal velocity at

the free surface in terms of the potential at the free surface and the wave elevation (the Dirichlet to

Neumann operator). The dominant part of the solution is global and is obtained by fast Fourier

transform (FFT). The remaining part is highly nonlinear and have integrals with kernels that decay

quickly in the space coordinate. The iterative method is so rapidly convergent that one iteration is

sufficient for most practical applications. In such cases the method is explicit. The method follows

the mathematical formulae that were derived in Clamond and Grue [6] for an infinitely deep fluid
in three dimensions and generalized to single and two layer motion with finite depths in three dimen-

sions in Grue [17]. So far, the method was neither implemented nor tested out in practical (3D)

computations.
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This paper communicates important extensions of the previous publications by Clamond and Grue [6]

and by Grue [17] on three main points. These include, firstly, an enhanced subdivision between the global

and local contributions to the inversion of the Laplace equation solver. We find that in the three-dimen-

sional computational scheme, it is highly useful to include one more term in the global Fourier inversion

of the integral equation, as compared to the two-dimensional procedure. Further, the contributions result-
ing from the imaging through the sea floor are enhanced, as compared to the initial formulae given in Grue

[17]. The added terms in the global evaluation of the Dirichlet to Neumann operator are evaluated by FFT

which significantly speeds up the performance of the scheme in 3D. The additions to the Fourier inversion

part share the beauty of analyticity which is ideal for potential manipulations.

Secondly, how to perform a highly accurate time integration of the three-dimensional problem is ad-

dressed here for the first time. This is a nontrivial extension of the time integrator in Clamond and Grue

in two dimensions. The conservative form of the equations differs from the two-dimensional case, see

Eqs. (20) and (21) below. Further, another decomposition of the dynamical boundary condition is em-
ployed in 3D, where the formula also includes new terms as compared to 2D. This substantially modifies

the computational strategy.

Finally, the implementation of the method is tested and documented more systematically than what

has been previously done. The detailed implementation of the de-aliasing technique for the products in

three dimensions is highlighted. The accuracy is mainly governed by two parameters: TOLOL and ITERTER.

The former sets the tolerance of the time-integrator scheme and is actively used in the step-size control.

The parameter ITERTER determines the number of iterations in the inversion of the Laplace equation sol-

ver. Numerical experiments with Stokes waves show that using ITERTER = 1 and TOLOL = 10�8, i.e., in prac-
tice an explicit scheme, leads to highly accurate results, with an error in the wave phase of 75� after

1000 periods of propagation, conserving the energy, however. This phase error is returned to zero upon

reversal of the time stepping. Further tests, using an enhanced resolution, document that using ITERTER = 3

and TOLOL = 10�8 reduces the error in the wave phase to 0.3� after 1000 periods of propagation, return-

ing the wave phase to 0� upon reversal of the time stepping. The same result is obtained using ITERTER = 5

and TOLOL = 10�8 meaning that only very few iterations are required still keeping a highly accurate and

energy conserving scheme.

This paper provides a complete description of the mathematical method and its numerical implementa-
tion in three dimensions. The performance of the method is illustrated in several examples. The description

is divided into this part I, focussing on wave motion in an infinite domain (using periodic boundary con-

ditions). A complementary part II [5] describes a fully nonlinear wave generation procedure and a novel

efficient wave damping strategy, with zero reflection.

This paper (part I) is organized as follows: Section 2 of the paper describes the prognostic equations (ob-

tained from the kinematic and dynamic boundary conditions) and the integral equation solving the Laplace

equation in the fluid domain. Reorganization and inversion of the integral equation using Fourier trans-

form leads to a rapid method for the normal velocity at the free surface. Section 3 describes the numerical
algorithms, the anti-aliasing technique, how to compute the global contributions from the integral equation

and how to evaluate the local contributions that are fast-decaying in space. The time stepping method is

further described. Section 4 describes the numerical tests, including integration of a progressive Stokes wave

103 periods forward in time, and return, a progressive solitary wave, and highly nonlinear evolution of cres-

cent wave patterns. Finally, Section 5 is concluding remarks.
2. Mathematical formulation

We consider three-dimensional irrotational wave motion at the surface of a homogeneous incompress-

ible fluid over a horizontal impermeable bottom.
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2.1. Equations in the physical space

Let x = (x1,x2) be the horizontal Cartesian coordinates, y the upward vertical coordinate and t the time.

y = g(x,t) determines the surface elevation (with y = 0 the level at rest) and y = �h the level of the imper-

meable horizontal bottom. Let~v ¼ ðu; vÞ be the velocity field, where u = (u1,u2) and v are the horizontal and
vertical velocities, so that~v ¼ grad/, u = $/ and v = /y, where / denotes the velocity potential and $ the

horizontal gradient. We denote with �tildes� the quantities at the free surface, e.g.
~/ðx; tÞ ¼ /ðx; y ¼ gðx; tÞ; tÞ. Note that ~u ¼ gr/ differs from r~/ ¼ ~uþ ~vrg. At the free surface, ~u and ~v
are expressed by:
~u ¼
r~/� Vrgþ rg�r~/

� �
�rg

1þ jrgj2
; ~v ¼ V þrg � r~/

1þ jrgj2
; ð1Þ
where V ¼ o/=on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrgj2

q
and ~n denotes the outward normal of unit length at the free surface.

At the free surface, the pressure p (per unit mass) is either zero, or balances the effect of a surface tension

(if taken into account), a generating pressure ~pG (i.e., a pneumatic wavemaker) and a dissipative pressure ~pD
(i.e., a wave absorber). The free surface is generally material. For immaterial surfaces, one can also consider

a prescribed vertical velocity ~vD at the surface (~vD ¼ 0 for a material surface). The velocity ~vD can be used to

introduce a damping effect in order to absorb waves (similar to the damping pressure ~pD). Efficient proce-

dures of wave generation and wave damping are addressed in the accompanying paper, Part II [5].

The kinematic and dynamic conditions at the surface can be conveniently written:
gt � V ¼ ~vD; ð2Þ

~/t þ ggþ 1

2
~u � r~/� 1

2
~vV ¼ rr � rgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrgj2
q
264

375� ~pG � ~pD; ð3Þ
where g being the acceleration of gravity and r the (constant) surface tension coefficient. The generating
pressure ~pG, the damping pressure ~pD and velocity ~vD are not used in Part I. They will be defined in Part

II of the paper. In the numerical examples below we shall take ~pG ¼ ~pD ¼ ~vD ¼ r ¼ 0.

The solution of the Laplace equation (resulting from incompressibility and irrotationality) provides a

relation between the (unknown) normal velocity at the surface, defined through V below Eq. (1), and

the (known) quantities ~/ and g at the surface (and their spacial derivatives). This relation defines an oper-

ator which produces the Neumann data V from the Dirichlet data ~/. This operator is often referred to as

the Dirichlet to Neumann operator.

The Laplace equation, together with the bottom impermeability, is solved exactly by means of a Green
function and the method of images ([6, Section 6]; [17, Section 6]), i.e.
Z

S

1

~r
þ 1

~rB

� �
o/0

on0
dS0 ¼ 2p~/þ

Z
S

~/
0 o

on
1

~r
þ 1

~rB

� �
dS0; ð4Þ
where ~/ ¼ ~/ðx; tÞ, ~/0 ¼ ~/ðx0; tÞ, ~r2 ¼ R2 þ ðy0 � yÞ2 and ~r2B ¼ R2 þ ðy 0 þ y þ 2hÞ2.
Here, R = jRj denotes the horizontal distance between the field point and the source point, where

R = x 0 � x. In (4) S denotes the instantaneous free surface of the fluid.

In the paper [6], Clamond and Grue introduced the variable D = [g(x 0,t) � g(x,t)]/R = [g 0 � g]/R. Note

that D � R�1 as R ! 1 and D! og/oR as R! 0. Correspondingly, a variable DB is introduced by

DB = [g 0 + g]/RB where RB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 4h2

p
. For non-overturning surfaces with dS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jr0g0j2

q
dx01dx

0
2,

the integral equation may be expressed in the form
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Z
V 0

ð1þ D2Þ1=2
dx0

R
þ
Z

V 0

ð1þ 4hDBR�1
B þ D2

BÞ
1=2

dx0

RB

¼ 2p~/þ
Z ~/

0ðR � r0g0 � g0 þ gÞ
ð1þ D2Þ3=2

dx0

R3
þ
Z ~/

0ðR � r0g0 � g0 � g� 2hÞ
ð1þ 4hDBR�1

B þ D2
BÞ

3=2

dx0

R3
B

; ð5Þ
where the following convenient brief notation is used:
Z
�dx0 �

Z 1

�1

Z 1

�1
�dx01dx02: ð6Þ
2.2. Reformulation of the boundary integrals

The direct numerical computation of V from the boundary integrals in (5) is demanding and not suitable

for large domains and long time simulations. A more suitable formulation is derived rewriting the lowest-

order nonlinear terms as convolutions, the remaining integrals having rapidly decaying kernels allowing

truncated integrations [6]. For simplicity, we present here the deep water case only (h = 1). The corre-

sponding expansion for finite depth is given in Appendix A.

Following [6] we first exploit that
R � r0g0

R3
� g0 � g

R3
¼ �r0 � ðg0 � gÞr0 1

R

� �
: ð7Þ
Then, by application of Gauss theorem, we may partially rewrite the corresponding integral in (5). The

modified and reorganized version of the equation reads (with h = 1, see [6])
Z
V 0R�1dx0 ¼ 2p~/þ

Z
ðg0 � gÞr0~/

0 � r0R�1dx0 þ
Z

V 0R�1 1� ð1þ D2Þ�1=2
h i

dx0

þ
Z

~/
0
1� ð1þ D2Þ�3=2
h i

r0 � ðg0 � gÞr0R�1
� 	

dx0: ð8Þ
A decomposition V = V1 + V2 + V3 + V4 is introduced, where:
Z
V 0

1R
�1dx0 ¼ 2p~/; ð9Þ

Z
V 0

2R
�1dx0 ¼

Z
ðg0 � gÞr0~/

0 � r0R�1dx0; ð10Þ

Z
V 0

3R
�1dx0 ¼

Z
~/
0
1� ð1þ D2Þ�3=2
h i

r0 � ðg0 � gÞr0R�1
� 	

dx0; ð11Þ

Z
V 0

4R
�1dx0 ¼

Z
V 0R�1 1� ð1þ D2Þ�1=2

h i
dx0: ð12Þ
Fourier transform is then applied to invert the equations (for the unknowns V1, V2, V3 and V4). For the left

hand sides of (9)–(12) we get
F

Z
V 0

jR
�1dx0


 �
¼ 2pk�1

Z
V 0

je
�ik�x0dx0 ¼ 2pk�1V̂ j; ð13Þ
where the Fourier transform F is defined as:
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/̂ðk; tÞ ¼ F ~/
n o

¼
Z

~/ðx; tÞe�ik�xdx;

~/ðx; tÞ ¼ F�1 /̂
n o

¼ 1

4p2

Z
/̂ðk; tÞeik�xdk;
where k = (k1,k2) denotes the wavenumber, and k = jkj. We have exploited that FfR�1g ¼ 2pk�1e�ik�x0 . The
transformed Eq. (9) becomes V̂ 1 ¼ k/̂ and, similarly, for the other terms we obtain ([6, Section 6]):
V̂ 2 ¼ �kF gV 1f g � ik �F gr~/
n o

; ð14Þ

2pV̂ 3 ¼ kF
Z

~/
0
1� ð1þ D2Þ�3=2
h i

r0 � ðg0 � gÞr0R�1
� 	

dx0

 �

; ð15Þ

2pV̂ 4 ¼ kF
Z

V 0R�1 1� ð1þ D2Þ�1=2
h i

dx0

 �

: ð16Þ
In finite depth computations, a corresponding set of equations results from (A.2), see Appendix A.

2.3. Global and local integration

In [6] only the quadratic terms ðV̂ 2Þ were written as convolutions. We push here this expansion further in
writing also a part of the cubic term as convolutions ðV̂ 4Þ. This allows us to write the integral (16) as a sum

of convolutions, which are computed via Fourier transform, plus an integral with a kernel that decays (even

more) quickly
2pV̂ 4 ¼ kF
Z

V 0R�1 1

2
D2dx0


 �
þ kF

Z
V 0R�1 1� 1

2
D2 � ð1þ D2Þ�1=2

� �
dx0


 �
: ð17Þ
The former integral is easily obtained by convolutions, i.e.
kF
Z

V 0R�1 1

2
D2dx0


 �
¼ �pkF g2F�1fkFfV gg � 2gF�1fkFfgV gg þF�1fkFfg2V gg

� 

:

The kernels of the inner integrals of (15) and of the second term on the right hand side of (17) decay like

R�4 and R�5, respectively. These integrals may be evaluated over a very limited region of the x-plane, still
keeping high accuracy.

While V1, V2, and V3 are determined by known functions at the free surface, V4 is determined

implicitly. The latter is computed iteratively using an iteration procedure that may be continued until

a desired accuracy is achieved. The number of iterations is in the code determined by the parameter

ITERTER (see Section 3.2 below). In many practical computations one iteration (ITERTER = 1) is sufficient, how-

ever, i.e., we replace V by V1 + V2 + V3 in the right-hand side of (17). In this case the inversion

procedure of the Laplace equation is explicit. The simulations presented in Section 4 below show that

an enhanced accuracy is obtained if three iterations (using ITERTER = 3) are performed. This is important if

the time simulations are very long or of high complexity. Comparisons using ITERTER = 1, 3 and 5 show
that the two latter give the same accuracy, while ITERTER = 1 gives an excellent prediction, which can be

refined, however.

The solution of the Laplace equation presented here can be viewed as a ‘‘hybrid’’ between the expansion

method [8,11,37] and the boundary integral method [10,23], taking advantage of the features of both

formulations: speed and accuracy.



D. Fructus et al. / Journal of Computational Physics 205 (2005) 665–685 671
2.4. Remarks

In cases when D2 < 1, the term 1 � (1 + D2)�1/2 has a convergent series expansion of the form
1� 1þ D2
� ��1=2 ¼ 1

2
D2 � 3

8
D4 þ 5

16
D6 þ � � � ðD2 < 1Þ: ð18Þ
This infinite expansion can formally be used to rewrite the integral V4 in the form of a sum of convolutions
only. Hence, after functional iterations, one obtains an explicit expression for V which, after some analyt-

ical manipulations, reduces to the expansion of the Dirichlet–Neumann operator due to Craig and Sulem

[8]. However, this method suffers of several drawbacks (see also comments in Section 2.5 below):

(i) The series converges for D2 < 1 only. There are physical situations where jDj is locally close to one for

non-breaking waves.

(ii) Even if the series does converge, the convergence is very slow, except for very small jDj. A significant

gain of accuracy can therefore be expected only at the expense of considerable computations.
(iii) Since calculations are performed with finite precision arithmetics, the gain expected from higher trun-

cations is annihilated by a large accumulation of round-off errors. Thus, even for small jDj, the use-

fulness of higher-order expansions is limited [31].

(iv) The convolution terms involve high-order derivatives that increase with the order of truncation. Com-

putations of high-order derivatives are numerically unstable. On the other hand, computations of inte-

grals have natural smoothing effects. Note that in the two-dimensional version of the model as it is

implemented in [6], only the quadratic terms ðV̂ 2Þ can be rewritten as convolutions keeping the scheme

stable. The method is therefore better conditioned in three than in two dimensions.
(v) Another inconvenience with the convolution terms is their ill-conditioning due to cancellations. This

puts additional restrictions on the efficiency of the expansion methods.

(vi) Finally, it turns out that expansions methods are competitive only at low-order truncations, i.e., to

simulate waves with small steepnesses over relatively short periods of time.

If the computation of V is limited to the convolution terms, our scheme is comparable to the classical

Zakharov equation [40]. This is therefore a decently accurate approximation. Thus, very fast investigations

can be performed computing V1 + V2 + V4 only (V4 being computed replacing V by V1 + V2 in the right
hand side of (17) without the integral), and when interesting results are obtained, the computations are

redone with the entire solution.

In summary, our main conclusion is that the term 1 � (1 + D2)�1/2 is best divided into the sum
1� 1þ D2
� ��1=2 ¼ 1

2
D2 � 1þ D2

� ��1=2 � 1þ 1
2
D2

h i
;

where the first term ð1
2
D2Þ contributes to a global evaluation, and the second to a local, truncated integra-

tion. This division is found to be insensitive to the magnitude of jDj. If jDj is moderately small, the second

term is correspondingly small and may be neglected.
An alternative is to split the term into
1
2
D2 � 3

8
D4 � 1þ D2

� ��1=2 � 1þ 1
2
D2 � 3

8
D4

h i

including also (�3/8)D4 in the global evaluation, and the remaining part as an even stronger local, trun-

cated integration. This strategy has been tested and found to lead to a numerically unstable procedure.

We have found that it is important to keep terms up to cubic appearance (due to the free surface contri-

bution), but stop a further expansion of the Dirichlet to Neumann operator.With this, we derive a highly effi-

cient anti-aliased scheme, see Section 3.1 below. For images through the bottom (finite depth contribution)
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higher order convolutions are still effective, because the Fourier transform typically then involves a factor

e�2kh, contributing to a strong reduction of the energy at high wavenumbers.

2.5. Further comments

While standard expansion methods suffer from significant ill-conditioning problems, alternative pertur-

bative approaches for problems in 2D, leading to a stable evaluation of the Dirichlet to Neumann operator,

are studied by Nicholls and Reitich [26]. A detailed stability analysis was recently presented by Hou and

Zhang [19] for the point vortex method for 2D water waves, adding stabilizing terms to the boundary inte-

gral method that exactly cancels a destabilizing term produced by using a point vortex method. Such strat-

egies were not required with the present, non-perturbative formulation.
3. Numerical algorithms

The computational domain is rectangular, periodic in both directions and discretized with constant steps

Dx = (Dx1,Dx2) over 2N = 2(N1,N2) nodes. p/Dxi is thus the highest wavenumber (the Nyquist frequency) in

the ith direction.

Simulations of non-periodic problems are achieved embedding the physical domain into a larger periodic

box and using absorbing boundary conditions described in the Part II [5].

All the linear operations (e.g. differentiation) are computed in Fourier space and all the nonlinear ones in
physical space. The transfers between physical and spectral space are obtained by FFT algorithms. The

computations of the nonlinear terms require special care in order to avoid aliasing. We emphasize that

the anti-aliasing technique explained below is the only method used to avoid numerical instabilities: we

do not use, e.g. smoothing interpolations, regridding, artificial numerical viscosity, etc.

3.1. Anti-aliasing technique

For the numerical stability, it is crucial to compute the nonlinear terms free of aliasing errors ([3,4], Sec-
tion 3.2).

The product between two discrete functions in physical space corresponds to a circular convolution in

Fourier space (the spectra are periodic). De-aliased computations can be performed extending the spectra

by zeros padding ([4], Section 3.2). The spectra must be extended by (at least) a factor of three-half for

quadratic nonlinearities. Similarly, extensions by a factor four-half is required for cubic nonlinearities,

by a factor of five-half for quartic nonlinearities, etc. This method becomes expensive, in terms of compu-

tational time and memory, for high-order nonlinearities. Instead, we apply repeatedly the four-half rule,

setting to zero the extra wavenumbers each time a double or triple product is performed.
Note that, for example, it is not exactly equivalent to compute f4 with the five-half rule and to compute

f2 · f2 applying twice the three-half rule (or to compute f3 · f applying first the four-half rule and then the

three-half rule). However, the Fourier spectra of regular functions being exponentially decaying, the error

induced by repeated applications of the three-half rule as (f2)2 is comparable to the round-off error, if the

discretization of f is sufficiently refined.

3.2. Computation of V

The integrals involved in V3 and V4 are truncated for x 0 2 [x � k;x + k], k being given a priori. Since the

kernels of the integrals are decaying rapidly k can be taken much smaller than the size of the computational

box. In practice k is chosen as one characteristic wavelength (e.g. the peak frequency of a JONSWAP spec-
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trum), which is sufficient for most applications. The effect of truncation was studied in detail in [6] for the

two-dimensional case. In the present three-dimensional extension of the method, the kernels decay faster

than their two-dimensional counterparts, justifying the truncation over one typical wavelength. Note that

the truncation depends on the wave field characteristics and not on the size of the computational domain.

This means that the computational time increases linearly with the domain size, and not quadratically (or
even worse) as in other methods.

The implicit term in V4 is computed applying simple functional iterations. The number of iterations used

for its evaluation is ITERTER. One iteration is often sufficient in practice. Of course, the required number of

iterations ITERTER depends on the phenomenon studied and on the desired accuracy.

The domain is discretized with constant steps and the integrals are computed using the trapezoidal rule.

According to the Euler–MacLaurin formula, this provides a very accurate approximation. To avoid explicit

treatment of apparent singularities at x 0 = x, the integrands are evaluated at the nodes xj ¼ ðjþ 1
2
ÞDx, and

shifted back to the regular nodes via Fourier interpolations (requiring two FFTs).
Note that the computation of the regular integrals is, by essence, easily parallelizable. The implementa-

tion is done in Fortran 90. This allows the use of multiprocessor systems, either using shared memory par-

allel systems (SMP), dispatched memory parallel systems (DMP) or a combination of both (hybrid

solution). This is exploited by dividing the physical domain where the integrals have to be computed into

sub-domains. A given sub-domain is then resolved by a single node (which may itself be a SMP system if

the machine used is of hybrid type). The computation of the integrals is the more demanding part. The

execution time is therefore (roughly) divided by the number of processors available. The procedure is fast,

and becomes particularly interesting when considering large domains where the use of hybrid machines can
really be exploited.

3.3. Time stepping

Extracting the linear parts of (2) and (3) and taking their Fourier transforms, these equations are rewrit-

ten into the skew-symmetric form
F̂ t þ �AF̂ þ R̂ ¼ N̂ ; ð19Þ

where:
R̂ ¼
0

kx
g
p̂G

 !
; F̂ ¼

kĝ
kx
g
/̂

 !
; �A ¼

0 �x

x 0

� �
; ð20Þ

N̂ ¼
kF V � V 1 þ ~vDf g

kx
2g
F ~vV � ~u � r~/þ 2rr �

ffiffiffiffiffiffiffiffiffiffiffiffi
1þjrgj2

p
�1

� �
rgffiffiffiffiffiffiffiffiffiffiffiffi

1þjrgj2
p

� �
 �
� kx

g
p̂D

0@ 1A; ð21Þ
and g ¼ g þ rk2 and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kh

p
. Eq. (19) form a conservative system of equations (if

~pG ¼ ~pD ¼ ~vD ¼ 0) for the pair of dimensionless dependent variables kĝ and kx/̂=g.
The temporal resolution of such a system is very stiff for large x, and the time step must therefore be very

small. To avoid this problem, it is advantageous to introduce the change of dependent function (integrating

factor [3]):
F̂ ðk; tÞ ¼ exp½�Aðt0 � tÞ�Ĝðk; tÞ �
Z t

t0

exp½�Aðt0 � tÞ�R̂ðk; t0Þ dt0; ð22Þ

Ĝðk; tÞ ¼ exp½�Aðt � t0Þ�F̂ ðk; tÞ þ
Z t

t0

exp½�Aðt0 � t0Þ�R̂ðk; t0Þ dt0; ð23Þ
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which yields the equation
Ĝt ¼ exp½�Aðt � t0Þ�N̂ ; Ĝðk; t0Þ ¼ F̂ ðk; t0Þ: ð24Þ

The nonlinear system (24) is then solved via a six-stages fifth-order Runge–Kutta scheme with an embedded

fourth-order scheme for the time stepping control (Hairer and Wanner [18]). Since water wave problems are

numerically very stiff, a stabilization of the time step is achieved by a special ‘‘PI step size control’’ (see [18,
IV Section 2]). Numerical tests have shown that such a stabilization technique yields a substantial improve-

ment to the method. We denote by TOLOL the tolerance required for the time integrator scheme.

Due to the analytic integration of the linear part, the scheme is unconditionally linearly stable and exact.

For the temporal integration of the nonlinear remaining equation, many integrators are possible (including

multiple steps, Taylor expansions, nonlinear, symplectic and hybrid schemes). We have found that the

scheme above represents a very good compromise between: ease of implementation, speed, memory require-

ment, stability, accuracy and conservation of invariants.

We note that if we now neglect the right hand side of (24) (no dissipation nor nonlinearities, N̂ ¼ 0),
Ĝðk; tÞ ¼ F̂ ðk; t0Þ. This leads to the following linear solution:
ĝðk; tÞ ¼ ĝ0 cosxðt � t0Þ þ
x
g
/̂0 sinxðt � t0Þ �

x
g

Z t

t0

p̂Gðk; t0Þ sinxðt � t0Þ dt0;

/̂ðk; tÞ ¼ /̂0 cosxðt � t0Þ �
g

x
ĝ0 sinxðt � t0Þ �

Z t

t0

p̂Gðk; t0Þ cosxðt � t0Þ dt0;
ð25Þ
where ĝ0 ¼ ĝðk; t0Þ; /̂0 ¼ /̂ðk; t0Þ. Once the term p̂Gðk; tÞ is defined, one can explicitly express analytically

the linear solution (some explicit solutions for different functions p̂Gðk; tÞ are given in the part II [5]).
4. Numerical tests

We have chosen three different test cases relevant to typical problems of surface gravity waves. We pres-

ent first two sets of simulations of long-crested progressive waves in deep and shallow water (i.e., a Stokes
wave and a solitary wave). We also illustrate the method with a purely unsteady three-dimensional appli-

cation (horse shoe) for which accurate experimental data are available. Our primary goal is to illustrate the

method and to show that the procedure is fast, robust and very accurate.

The accuracy of the simulations are governed by the two parameters: TOLOL and ITERTER, where the former is

used in the step-size control, and the latter determines the number of iterations in the inversion of the

Laplace equation solver.

4.1. Progressive Stokes wave

We first consider the propagation in deep water of an exact Stokes wave of steepness ak = 0.2985 (a

the half wave height and k the wavenumber). The initial condition (i.e., at t = 0) for the free surface

elevation g and the potential at the surface ~/ are obtained from Fenton�s exact numerical solver

[14]. The computational domain is quadratic and includes two wavelengths in each horizontal direction.

It is discretized over 64 · 64 collocation points, meaning that the first seven harmonics of the Stokes

wave are resolved.

In an attempt to evaluate the accuracy of both the temporal integrator scheme and of the evaluation
procedure of V, we assess the problem of reversibility of the solution. We study the evolution of the phase

shift Du and of the total energy (defined by 2E ¼
R
ðgt~/þ gg2Þdx) in a long time forth-and-back simulation.

The forward simulation is carried out up to t = 103T0, where T0 is the period of the Stokes wave. Then, the
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time is reversed and the backward simulation is performed down to the initial time t = 0. Simulations are

done with different values of the tolerance parameter TOLOL and the parameter ITERTER.

Fig. 1 presents the results of these simulations. In Fig. 1(a), the free surface elevation is plotted at t = 0,

t = 103T0 and t = 0 (after backward simulation), computed with TOLOL = 10�8 and ITERTER = 3. The effect of the

parameters TOLOL and ITERTER on the convergence of the model are depicted in Fig. 1(b) and (c), respectively.
The evolution of the total energy (with TOLOL = 10�8 and ITERTER = 3) is shown in Fig. 1(d). The results in Fig. 1

motivate for the following comments:

(i) The method converges quickly with the number of iterations, ITERTER. Although there are substantial dif-

ferences (after long time) between one and three iterations, more than three iterations do not provide

further improvements. For very accurate long time simulations it is therefore sufficient to employ

ITERTER = 3. For short simulations, one iteration is sufficient, most of the time, however.

(ii) The reversibility of the scheme increases as the tolerance parameter TOLOL decreases. With TOLOL = 10�8

(at least for this particular long time forward–backward simulation) the initial condition is perfectly

recovered (Fig. 1(a) and (b)). This means that the errors due to the temporal integrator, to the evalu-

ation of the Green integral and the accumulation of round-off errors are insignificant.

(iii) The total energy is relatively well conserved (Fig. 1(d)) and, more importantly, no increasing or

decreasing trend is observed. The absence of a trend is crucial for the reversibility of the scheme.

The integrator used is an explicit Runge–Kutta scheme, and one may expect the total energy to

increase during the simulation, however. Such a global trend is observed in long time simulations if

TOLOL = 10�6 is used (results not shown here). Setting TOLOL = 10�8 reduces an increase in the total energy
error to a very low value. Even after 2000 periods of propagation, we do not observe any trend. On the

other hand, usual smoothing techniques or filtering decreases the total energy, often in a dramatic way.

Since neither smoothing nor filtering is used here, the total energy is allowed to be conserved. With no

smoothing techniques used, one could then expect high frequencies of the numerical solution to blow

up. Indeed the long time simulations for large waves show that the scheme is highly stable.

(iv) The phase shift error obtained from the numerical solution is only of about 18� after 1000 periods of

propagation (Fig. 1(a) and (b)). This demonstrates the efficiency of the evaluation procedure of V.

To further check the convergence of the method, we perform a series of simulations where we fix

TOLOL = 10�8 and ITERTER = 3, varying the number of collocation nodes in both directions. All the simulations

are carried out from t = 0 up to t = 103T0. We evaluate, during each simulation, the relative error in the

effective period (or alternatively the small phase shift) as compared to the period of the Stokes wave T0.

The relative error (in percents) is eerr = 100jT � T0j/T0 where T = 2p/x denotes the effective period. Here

x is evaluated numerically from the phase shift by xt = x0t + Du where Du is given in radians at

t = mT0 and where x0 = 2p/T0. Table 1 presents the relative error for several resolutions. It can be seen

from these examples that the method converges quickly with increasing number of nodes in both directions.
For the simulations corresponding to a purely two-dimensional problem, the strong contribution to an

enhanced accuracy due to a refinement in the lateral direction, increasing the value of N2, may seem sur-

prising. This is due to the fact that the evaluation of the local integrals are performed in both directions,

however. It can be noted that the simulations with a discretization of 64 · 128 collocation points lead to

a very small relative error in the period (see Table 1). The phase shift error obtained in this case is only

of about one third of a degree after 1000 periods of propagation.

4.2. Progressive solitary wave

To further illustrate the efficiency of the method, we consider as well a problem in shallow water. A sol-

itary wave is propagated along the numerical tank in a forward time simulation. Then the simulation is



Fig. 1. Forward–backward simulation of a Stokes wave (ak = 0.2985) discretized over 64 · 64 collocation points. (a) Surface at: (––)

t = 0, (– –) t = 103T0, (+) t = 0 (after backward integration in time); (TOLOL = 10�8, ITERTER = 3). (b) Evolution of phase error Du with

ITERTER = 3 and (– –) TOLOL = 10�6, (––) TOLOL = 10�7, (·) TOLOL = 10�8. (c) Evolution of the phase error Du with TOLOL = 10�8 and (– –)

ITERTER = 1, (––) ITERTER = 3, (·) ITERTER = 5. (d) Relative error of the total energy (TOLOL = 10�8, ITERTER = 3).
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Table 1

Relative error (percent) of the wave period eerr = 100jT � T0j/T0 computed for a Stokes wave ak = 0.2985

N2 + N2 N1 + N1

16 32 64 256

16 4.1958 0.1509 0.0234 0.0238

32 4.2035 0.1650 0.0115 0.0116

64 4.2044 0.1752 0.0046 0.0058

128 4.2044 0.1747 0.0001 0.0001

The computational domain includes two wavelengths in each direction and is discretized over 2N1 · 2N2 collocation points. T0

corresponds to the exact wave period computed from [14]. The simulated wave period T is evaluated from the obtained phase shift after

1000T0 of propagation. Using ITERTER = 3 and TOLOL = 10�8. A relative error of 0.0001% corresponds to about 0.3� phase shift after 1000
periods of propagation.
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reversed, as in the previous example. For illustration, we consider a solitary wave with a/h = 0.6 (a denotes

the maximal excursion of the wave, h the water depth). The initial condition is obtained using an algorithm

by Tanaka [32] which computes the exact solitary wave solution. The solitary wave is discretized over

(4096 · 32) collocation points, with Dx1/h = 0.2 and Dx2/h = 0.3. Fig. 2 presents the time evolution of the

free surface elevation while the Fig. 3 compares the elevation at t = 0, t ¼ 250
ffiffiffiffiffiffiffiffi
h=g

p
and after backward

integration in time. Here the numerical parameters have been taken as k/h = (10,10), TOLOL = 10�7 and

ITERTER = 3. The initial condition is recovered after backward integration in time, similarly to the previous

example (Fig. 3).
These two examples illustrate the efficiency of the method. Considering two-dimensional exact solutions

in infinite depth and in shallow water, we show that the time integration scheme is very efficient while the

obtained solution is very accurate. Owing to the use of fast algorithm for the evaluation of Discrete Fourier

Transform, the scheme is very fast while the anti-aliasing technique allows us to avoid the use of smoothing.

This leads to computations where, even on very long time simulations, the total energy is conserved. The

solution is accurate and the computation is stable.

4.3. Crescent wave patterns

While the physics in the previous examples were purely two-dimensional, we now illustrate the potential

of the method computing three-dimensional instabilities of Stokes waves. We study the evolution of large

amplitude Stokes waves perturbed by a small initial three-dimensional perturbation. We focus on the emer-

gence of crescent wave patterns due to class II instabilities (following McLean�s description [24]). The evo-

lution of such class II instabilities have been the topic of many studies. Experimental investigations [29,25]

as well as theoretical [28] and numerical ones [38] provide a good understanding of the underlying phenom-

enon responsible for the formation of crescent wave patterns. Two satellites of wavevectors ka and kb and
respective frequencies xa and xb, may get into resonance with the fundamental of the Stokes wave,

k0 = (1,0)k0 and frequency x0, in a quintet interaction if the following resonance condition is fulfilled:
ka þ kb ¼ 3k0;

xa þ xb ¼ 3x0:



ð26Þ
Let us consider an initial perturbation with dominant wavevectors ka = (1 + p,q)k0 and kb = (2 � p,�q)k0
where p and q are arbitrary real numbers. If (p,q) lies in the class II instability zone, the quintet interaction

(26) leads to the formation of crescent wave patterns. The most unstable perturbation of class II corre-

sponds to p = 1/2. The corresponding pattern, known as horse-shoe pattern, is phase-locked to the unper-

turbed Stokes waves. Many observations of such patterns have been reported while another interesting

three-dimensional pattern was generated experimentally by Collard and Caulliez [7]. This pattern, named



Fig. 2. Propagation of a solitary wave a/h = 0.6 with TOLOL = 10�7 and ITERTER = 3. Elevation at t ¼ f0; 50; 100; 150; 200; 250g
ffiffiffiffiffiffiffiffi
h=g

p
.
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Fig. 3. Same as Fig. 2 in a simulation back and forth in time. Surface elevation at: – t = 0, – – t ¼ 250
ffiffiffiffiffiffiffiffi
h=g

p
, + t = 0 (after backward

integration in time).
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oscillating horse-shoe pattern, corresponds to the development of the unstable mode at p = 0. The pattern

was in the wave tank experiments caused by a perturbation that fits with the finite width of the tank.

In order to reproduce numerically such patterns with the present model, we compute first an exact

numerical solution of plane Stokes waves of steepness ak0 = 0.2985 [14]. A small perturbation g 0 of the wave

surface, taking the form g 0 = ea sin[(1 + p)k0x1] cos(qk0x2), is added to the Stokes wave train. Here, e is a
small number, making the amplitude of the initial perturbation field a fraction of the Stokes waves. For

each simulation, four periods of Stokes waves in the longitudinal direction and three periods of the pertur-

bation in the transversal direction are resolved by (128 · 64) nodes. The values of (p,jqj) are chosen as
(0.5,1.25) in the first simulation and as (0,1.32) and (1,1.32) in the second one. These choices correspond

to unstable modes in the (p,q)-plane, according to the analysis of the Class II instability [24]. The corre-

sponding wave vectors involved in (26) are then k0 = (1,0)k0, k1 = (1.5,1.25)k0 and k�
1 ¼ ð1:5;�1:25Þk0 in

the first simulation. Two quintets are involved in the second simulation:

k0; k2 ¼ ð1; 1:32Þk0 and k�
3 ¼ ð2;�1:32Þ for the first quintet and k0, k3 = (2,1.32), k�

2 ¼ ð1;�1:32Þk0 for

the second one. The growth of the crescent formed waves is then computed up to the level when breaking

occurs in the simulations, corresponding to a saturation of the perturbations in real conditions like in a

wave laboratory. We compare the simulated wave fields prior to breaking with observations that are avail-
able. It is noted that the present simulations differ from the physical laboratory experiments on a very

important point: in the experiments the resonant quintets are balanced by the effect of breaking, preventing

a further growth of the perturbation waves, contributing to a steady state. The latter is not achieved by a

conservative modeling.

The evolution of the modal energy for the wave vectors involved in the two simulations are presented in

Fig. 4.

Fig. 4(a) presents the results from the first simulation. The dynamics leads to the formation of horse-shoe

patterns through the quintet interaction k1 þ k�
1 ¼ 3k0.

Fig. 4(b) is concerned with the results from the second simulation. The dynamics leads to the formation

of oscillating horse-shoe patterns. Here the two quintet interactions are k2 þ k�
3 ¼ 3k0 and k3 þ k�

2 ¼ 3k0.

The continuous growth is accompanied by an oscillatory energy transfer between the modes (due to the

resonant interaction k2 þ k�
3 ¼ k3 þ k�

2).

Fig. 5(a) and (b) presents the free surface elevation corresponding to horse-shoe and oscillating horse-

shoe patterns, respectively, while Fig. 5(c) and (d) presents the corresponding wave frequency spectra.

The superharmonic frequency peaks that appear in Fig. 5(c) and (d) confirms the second condition for



Fig. 4. Evolution of spectral energy for the main modes. (a) k0 = (1,0), k1 = (1.5,1.25), k�
1 ¼ ð1:5;�1:25Þ. The initial wave field is a

Stokes wave with (ak)0 = 0.3 and the initial perturbations were set at k1 and k�
1 with e = 0.025. (b) k0 = (1,0), k2 = (1,1.32),

k�
2 ¼ ð1;�1:32Þ, k3 = (2,1.32), k�

3 ¼ ð2;�1:32Þ. The initial wave field is a Stokes wave with (ak)0 = 0.3 and the initial perturbations were

set at k2 and k�
2 with e = 0.025.

Fig. 5. Free surface elevation corresponding to (a) Fig. 4(a) at t/T0 = 16 and (b) Fig. 4(b) at t/T0 = 23. (c, d) Wave frequency spectra,

(a, c) horse-shoe pattern, (b, d) oscillating horse-shoe.
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the quintet interaction (26). While the peaks corresponding to x0,2x0, . . . are due to the basic Stokes wave,

additional ones at 1.5x0, . . . (Fig. 5(c)) are due to k1 and k�
1 while the peaks at 4/3x0,5/3x0, . . . (Fig. 5(d))

correspond to k2; k
�
3; k3 and k�

2.

For the sake of validation of the present results, a direct comparison with the experiments on the steady

horse shoes are performed. Su [29] used five parameters to describe the waves (Fig. 6). Table 2 presents Su�s
results compared to the ones we obtained from the simulations just before breaking. Our results has a max-

imum relative difference from the observations of less than one percent for four of the parameters and six

percent for the remaining parameter. For comparison, the results from the numerical simulation of Xue et

al. [38] have been added in Table 2. Their simulations differ from ours, however, in the sense that the initial

level of disturbance was much higher in their simulations (they used e = 0.16) and that they considered

slightly steeper initial Stokes waves (ak = 0.33) in their simulations. The agreement between the experimen-

tal results and the present numerical predictions is gratifying. This means that the final stage of the com-

puted steady horse-shoe pattern corresponds to the experimentally observed one, both in amplitude and
wave length.

Secondly, we perform comparisons with experimental results of Collard and Caulliez [7] for the oscillat-

ing horse-shoe patterns. We consider first the experimental observations of the oscillatory horse-shoe

pattern, at the stage where saturation is reached. The log-plot of the energy density shows a ratio between

the perturbation modes and the fundamental being �1.5/3.5 [7]. The corresponding result for the compu-

tations is �2/3.5, see the Fig. 5(d). This means that the simulations of the oscillatory horse-shoe patterns are

carried out up to a level corresponding to the experimental observations where a further growth of the

waves is limited by wave breaking.
Fig. 6. Definition sketch of Su�s geometrical parameters for the steady horse-shoe pattern. Wave elevation along propagation

direction, through main (every second) maximum perturbation peak (see Fig. 5(a)).

Table 2

Comparison of characteristic crescent wave geometrical parameters for which quasi-steady state is assumed to be reached

k1/k2 h11/h12 h21/h22 h11/h21 Smax

Su [29] 1.28 1.10 0.88 1.66 0.65

Present model (Fig. 5(a)) 1.28 1.11 0.88 1.56 0.66

Xue et al. [35] t = t1 1.05 1.18 0.81 1.49 0.45

Xue et al. [35] t = t2 1.07 1.09 0.88 1.64 0.64

Xue et al. [35] t = t3 1.03 1.18 0.80 1.63 0.69

Xue et al. [35] t = t4 1.17 1.26 0.75 1.60 0.51

Smax = Max(jgxj) denotes the maximum slope.



682 D. Fructus et al. / Journal of Computational Physics 205 (2005) 665–685
For the results concerning the steady horse shoes, the computations were performed on a 1.3 GHz Pen-

tium 4M processor (laptop). The resolution was (128 · 64) nodes and the numerical parameters were taken

as TOLOL = 10�7 and ITERTER = 3. The total computational time for each of these two simulations was 	5500 s.
5. Concluding remarks

We have developed a numerical method to simulate fully nonlinear non-overturning free-surface

waves. The water depth is either finite or infinite. While other methods exist to solve this problem, they

suffer from several drawbacks. Numerical stability of the solution is usually a crucial point and is, in

practice, a very limiting factor. One has often to use smoothing techniques to avoid numerical blow-up

of the solution. Physically, this means that global parameters such as the total energy are not well

conserved during simulations of wave field evolution. Moreover, numerous methods use expansion tech-
niques about the free surface level at rest. This implies limitation to small to moderate local steepnesses

of the solution. Finally, the time execution is as well a very limiting factor, making large scale simu-

lations unrealistic.

The strategy we present here is based on an integral equation formulation and extensive use of Fourier

transform. At each step in the time integrator scheme, the Dirichlet to Neumann operator (solution of the

Laplace equation) is evaluated by expanding the operator through a highly truncated sum of convolution

terms, plus some integrals, representing the remainder in a perturbation expansion, with kernels that decay

quickly in space. The global convolution terms are computed very quickly via FFTs. The local contribu-
tions, due to the integrals, are evaluated by numerical integration over limited regions in the horizontal

plane. Moreover, the computation of the integrals (both global FFTs and local integrations) is, by essence,

easily parallelizable. This allows implementation on hybrid architectures and leads to very fast evaluation

of the local terms.

The Dirichlet to Neumann operator is evaluated by an iterative procedure that is rapidly converging. In

many applications one iteration is sufficient. In this case the inversion procedure of the Laplace equation is

explicit. The number of iterations is in the code governed by the parameter ITERTER. Very accurate predictions

are obtained using ITERTER = 3. This is important for long time simulations in large tanks. There is no gain in
using a higher value of ITERTER.

In order to limit the aliasing errors, the spectra are extended using zeros-padding. This rather expen-

sive procedure cannot be carried out indefinitely, however. It is here implemented for products that are

up to the fourth power. Extraction of more convolution terms from the integrals over the horizontal

plane is theoretically possible. This leads to even faster decaying contributions of the remaining inte-

grals. We find that such a procedure is accompanied by increasing numerical instability, however. This

is due to aliasing errors from higher order nonlinear terms which are difficult to tackle in practical

computations.
Analytical integration of the linear part of the prognostic equations means that this part of the solu-

tion is obtained to machine precision. The remaining nonlinear part is integrated using a highly accu-

rate time integrator combined with a special step size control technique. This yields a very stable and

accurate time integration scheme. We illustrate in three examples that the method converges quickly

and that the errors due to the temporal integrator, to the evaluation of the Green integral and the

accumulation of round-off errors are insignificant. The method can cope with the description of very

steep waves and requires no smoothing. The total energy is perfectly conserved during the numerical

simulations and the scheme is shown to be stable and accurate, even for very long time simulations
of very steep wave events.

Owing to the development of new technologies, including the democratization of 64 bits machines

and multi-processor architectures, the size of the numerical tank appears no longer as a drastic limita-
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tion. Large computations in both time and space of fully nonlinear water waves are now possible. Sim-

ulations of evolution of wave spectra or freak wave generation using the present model are realistic in

the near future.

The present model limits itself by the periodic wave tank. For many physical applications one has to

consider a tank of infinite length. If one wants to simulate an infinite channel the present model has to
be modified to include wave damping at the border of the tank. Fully nonlinear wave generation and wave

absorption are described in the accompanying paper, part II [5].
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Appendix A. Boundary integrals for the bottom

As for the surface integrals, the kernels of the contributions due to the bottom in (5) are par-

tially expanded around DB = 0 (i.e., around g = 0). We introduce RB
2 = R2 + (2h)2, and the part

of the kernel which is a polynomial in DB reduces to convolutions and can be computed via Fou-
rier transforms.

Thus, applying the Fourier transform of (5) and using the relation
F R�1
B

� 

¼ 2pehk

�1e�ik�x0 ; eh � e�2kh; ðA:1Þ
one obtains after some algebra (see [17, Section 6.1])
FðV Þ ¼ k tanhðkhÞFð~/Þ � k tanhðkhÞFfgV 1g � ik �Ffgr~/g þ kCh½ehFðgðV � V 1ÞÞ
þFðgF�1½ehFðV � V 1Þ�Þ� þ kCh½FðT ð~/Þ þ T 1ð~/ÞÞ þFðNðV Þ þ N 1ðV ÞÞ�; ðA:2Þ
where V 1 ¼ F�1½k tanhðkhÞFð~/Þ�, Ch ” 1/(1 + eh) and
T ð~/Þ ¼ 1

2p

Z
~/
0½1� ð1þ D2Þ�3=2�r0 � ðg0 � gÞr0 1

R

� �
dx0; ðA:3Þ
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2p

Z
V 0

R
½1� ð1þ D2Þ�1=2�dx0; ðA:4Þ
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2p

Z
V 0

R
½1� ð1þ D2Þ�1=2 � D2=2�dx0 � k

2
Fðg2V Þ þ 1

2
Fð2gF�1½kFðgV Þ�Þ

� 1

2
Fðg2F�1½kFðV Þ�Þ; ðA:5Þ

T 1ð~/Þ ¼ � 1

2p

Z
~/
0 12h2ðg0 þ gÞ

R5
B

dx0 þ 1

2p

Z
~/
0½R � r0g0 � ðg0 þ gÞ � 2h� 1

r31
� 1

R3
B

� �
dx0; ðA:6Þ
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T 1ð~/Þ ¼ � 1

2p

Z
~/
0 280h4

R2
B

� 30h2
� �

ðg0 þ gÞ3

R7
B

dx0 þ 1

2p

Z
~/
0½R � r0g0 � ðg0 þ gÞ � 2h�

� 1

r31
� 1

R3
B

þ 6hðg0 þ gÞ
R5
B

� 30h2

R2
B

� 3

2

� �
� ðg

0 � gÞ2

R5
B

" #
dx0 þ 1

2
ehik �Fðg2r~/Þ

þ 1

2
Fð2gF�1½ehik �Fðgr~/Þ�Þ � 1

2
Fðg2F�1½ehk2Fð~/Þ�Þ � 1

6
ehkik �Fðg3r~/Þ

� 1

6
Fð3gF�1½ehkik �Fðg2r~/Þ�Þ � 1

6
Fð3g2F�1½ehkik �Fðgr~/Þ�Þ

þ 1

6
Fðg3F�1½ehk3Fð~/Þ�Þ; ðA:7Þ

N 1ðV Þ ¼
1

2p

Z
V 0 1

RB

� 2hðg0 þ gÞ
R3
B

� 1

r1

� �
dx0; ðA:8Þ

N 1ðV Þ ¼
1

2p

Z
V 0 1

RB

� 2hðg0 þ gÞ
R3
B

� 1

r1

� �
dx0 þ 1

2p

�
Z

V 0 6h2

R2
B

� 1

2

� �
ðg0 þ gÞ2

R3
B

� 20h3

R2
B

� 3h
� �

ðg0 þ gÞ3

R5
B

 !
dx0 � k

2
ehFðg2V Þ

� 1

2
Fð2gF�1½kehFðgV Þ�Þ � 1

2
Fðg2F�1½kehFðV Þ�Þ þ 1

6
ehk

2Fðg3V Þ

þ 1

6
Fð3gF�1½ehk2Fðg2V Þ�Þ þ 1

6
Fð3g2F�1½ehk2FðgV Þ�Þ þ 1

6
Fðg3F�1½ehk2FðV Þ�Þ ðA:9Þ
Eqs. A.2,A.3,A.4,A.6 and (A.8) are equal to the single layer special case of the transient interface equations
in Grue [17]. Eqs. (A.5), (A.7) and (A.9) are results of further expansions, and it is these versions which are

implemented. The surface integral involving ~/ can be expanded in even orders in nonlinearity. If expanded

to sixth order, the fourth order convolution term is unstable. Therefore, this integral is given above to

fourth order. The surface integral involving V can be expanded in odd orders. The cubic convolution terms

is usually stable, hence this integral is given above as fifth order. Each of the bottom integrals are expanded

in both even and odd orders in nonlinearity (i.e., 1, 2, 3, . . .). Their fourth order convolution terms are

found to be stable, hence the integrals are given above as fifth order. The bottom integrals could probably

be expanded even further without the convolution terms becoming unstable.
The factor eh ” e�2kh which appears in most convolution terms is numerically fortunate since it acts like a

low-pass filter, allowing even the quartic (and probably higher order) convolutions to be unhampered by

high-frequency noise.
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